RSO AR T e T T MU T I WU WU T U WU WU U w U WU WU WOy W youflatauab at bet 0p" By of S e’ Sa" gab gatoiet RS eV dat GV ¢)

!
¢ 4

Unclassified T”t HLE W\)

‘ SECUMITY CLASSIFICATION OF TwiS PAGE (When Data Entered)
READ INSTRUCTIONS
' REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
“ ! REPORT NUMBER !,2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
. |
B h L
:I 4. TITLE rand Subtitle; 5. TVPE OF REPCRT & PERIOC CCVERED
) o Parallel Debugging Using Graphical Views Technical Report
A 6. PERFORMING ORG. REPORTYT NUMBER
) N
: m 7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)
_ =) NO0O14-86-K-0264
P .:E M. Bailey, D. Socha, D. Notkin
: l 9. PERFCRMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENTY. PRO.EZCT, TASK
\ . . . AREA & WORK UNIT NUMBE RS
0) ‘:} University of Washington
3 '=E Department of Computer Science
Seattle, Washington 98195
1. CONYR(_)LLING OFFiCE NAME AND ADORESS 12. REPORT DATE
Office of Naval Research March 1988
Information Systems Program 13. NUMBER OF PAGES
¢ Arlington, VA 22217
14. MONITORING AGENCY NAME & ADDRESS(/! difterent from Controlling Oftice; 15. SECURITY CLASS. (of thia report)
_ Unclassified
g 19¢. DECLASSIFICATION: DOWNGRADING
) SCHEOULE
;' 76. DISTRIBUTION STATEMENT (of this Repor:,
k) — e
) DISTRIBUTION STATEMENT X
, Approved for public release;
. Distribution Unlimited
. 17. CIS"RIBUTION STATEMENT (of the aostract entered In Blosk 20, il di!ferent from Report)
D LN T
2ot ¢ H .'-\/
! 'QLLLvl_
) 18. SUPPLEMENTARY NOTES
3 JUL 25 1988
[}
[\
2/
: 19. KEY WORDS (Continue on reverse aide i necessarv and ldentify by block number)
X debugging, parallel programming program visualization, parallel debugging
\ monitoring
|
;‘ 20 ABSTRAZT (Continuo on reverse side If necessary and identify bv dlock number)
! Graphical views are essential for debugging parallel programs because of the
‘ large quantity of state information contained in parallel programs. Voyeur,
a prototype system for creating graphical views of parallel proarams, providgs
a cost-effective way to construct such views for any parallel programming
system. We illustrate Voyeur by discussing four views created for debugging
K Poker programs. One is a ceneral trace facility for any Poker program. The
\ other three are tailored to display a specific type of algorithmic informatign.
. Each of these views has been instrumental in detecting bugs that would have
\ .
: DD ' FJ::“H]473 E'.?.l" ‘>~ Of ‘.‘NIO‘/'G? IS OBSOLETE

' ‘ -
'.‘l'- RN NN AT AN

SCm P TY SLASSIFICATION AF 7o 15 PAGE Whe- De‘a Rniere:

A R - ~mr - Wy) r;(-(. _v-‘" AT AT R
t . .. oo .l-.»’lh‘. ""'q. a7 '!..! .' v ‘ SEOROGA .l.' A)

&

oV K

-~

22

P o o

— z v v 8 & "

g

CECUSa Ty ALY o SF Tt £
L ASLEL T ATION O 1o fra LF Whan din ¥
. s Bntere o,

Ao

g

PA NP ELE QS

% o SR

N &

v

I'r‘:
A

—a .“' .

-
=

£ ."F‘-:“.i{“:’ oy

5

s

PR

, Aceession For

-

NT1S GRAGI
| DIIC T4B
)
|

A

el 2k

»

Unagnounced
stification

t \
o PO |
s_piipributiog[»ﬂA__»_“_J
| Avatlability Codes |
™" '|avail and/or

i
Dist \ special 1

-

|«
AN
LS S

5718,
- -,

-

P

X

|

R 4

~ .
SECURITY CLASSIFICATION OF“THIS PAGF ‘When Date Fnrecs s

‘l'v'l“‘..'lv ".‘.“lgl'l (R e N) LK o X] (] 0.4%9.872 .8 (d LI] 4 B Bl B 0 g N
£ R Xl A ¥ |’ ‘I " |' " ‘. ‘. "0 (] ..‘ " .' () ‘. " ‘. " .‘; ‘. ." .. ‘. .’ " " " () l.. Y l. ‘. ». "l‘ﬂ
47, 878 8. , . . (A (] (] » ‘
A . i L X .

.'
.'

X
5,

"
-
Al
N
’
20
i
oy
Wy
W
.:,
I'n
Parallel Debugging Using .
Graphical Views -'\
L
't/:w
»
W
Mary Bailey, David Socha, and David Notkin 4
Department of Computer Science, FR-35 2
University of Washington :‘.::
Seattle, Washington 98195 ;
iy
%
TR 88-03-05]
March 1988 s
S
*
)t
A
Pyt
' -
i
it
Rt
0
. »
Graphical views are essential for debugging parallel programs because of the large quan- o
tity of state information contained in parallel programs. Voyeur, a prototype system for N
creating graphical views of parallel programs, provides a cost-effective way to construct such 73
views for any parallel programming system. We illustrate Voyeur by discussing four views ol
created for debugging Poker programs. One is a general trace facility for any Poker program. _
The other three are tailored to display a specific type of algorithmic information. Each of --
these vicws has been instrumental in detecting bugs that would have been difficult to detect by
otherwise, yet were obvious with the views. _ y
This rescarch funded in part by the Office of Naval Research Contract N00014-86-K-0264, :
National Science Foundation Grant CCR-8416878, and the Air Force Office of Scientific '
Research Contract 88-0023. ¢)
¥
A
)
o)
5]
B A o O O O B o R e e o o SR A ALK

Parallel Debugging Using Graphical Views!

Mary L. Bailey, David Socha, and David Notkin
Department of Computer Science, FR-35
University of Washington
Seattle, WA 98195

Abstract

- Graphical views are essential for debugging parallel programs because of the large quantity
of state information contained in parallel programs. Voyeur, a prototype system for
creating graphical views of parallel programs, provides a cost-effective way to construct
such views for any parallel programming system. We illustrate Voyeur by discussing four
views created for debugging Poker programs. One is a general trace facility for any Poker
program. The other three are tailored to display a specific type of algorithmic information.
Each of these views has been instrumental in detecting bugs that would have been difficult
to detect otherwise, yet were obvious with the views. . ‘¢

IThis research funded in part by Office of Naval Research Contract Nu0014-86-K-0264, National Science
Foundation Grant CCR-8416878, and Air Force Office of Scientific Research Contract 88-0023.

Waty W N ! [¢ [4 x [TR Y Q] YLy LY v Gy T e g SR
B A A R e ST o STAGHG) 0 LRI B SIS B S M F e R .q N y, ‘)““ Yoy ‘. Y A' "'-'\ IO

T e -

A (-—.'

*

St

-

= Al N MR
o N, 3

% 25

"

ST

ﬂ-

¥

oy B
'.,"t‘ TR ol

i .

X

PRI

AR R R A A T T A TR o S T TR T R T T T P R R T A T N T o R R T T S S N R Bakooat aiatay vat sah eay ¢

Parallel Debugging Using Graphical Views!

Mary L. Bailey, David Socha, and David Notkin
Department of Computer Science, FR-35
University of Washington
Seattle, WA 98195

1. Introduction

Graphical views are essential for debugging parallel programs because of the large quantity of state
information contained in parallel programs. Voyeur, a prototype system for creating graphical views
of parallel programs, provides a cost-effective way to construct such views.

Historically, computers have supported debugging by providing access to the program’s state.
The programmer assimilates this information, comparing the expected and actual state of computation
to validate the program's execution or detect errors. Today's workstations allow a more powerful
approach to debugging. Graphical views can synthesize images of the program's state, focusing the
image on the algorithmic structure of the program or on the architectural structure of the target
computer. These images present a great deal of information in a readily assimilated manner. They
are a great help in managing state information, especially for parallel programs with their orders of
magnitude more information than sequential programs,

Current parallel debugging tools provide one of three levels of debugging. One is to use a
sequential debugger on one of the processes of a parallel program [1]. A second is to provide a
textual trace of program execution [2]. A third is to integrate the trace information and a visual view
of the program. Belvedere (3] displays a graph of a message passing program and shows the
message activity on the edges of this graph. Belvedere also can find and display logical pattems of
message activity in an asynchronous message-passing program. SDEF (4] uses a dispiay similar to
the Poker (5] Trace View described below. In addition they show message activity.

Voyeur is a prototype system for constructing general graphical views of parallel programs. The
goal in developing Voyeur is to make creating new views for debugging specific algorithms
practical. While the technology has been designed for viewing Poker programs, it is not limited to
Poker and can easily be made to work for any sequential or parallel program. We have used Voyeur
to construct four views of Poker parallel programs, each providing a different form of debugging
information. One of these views is a general debugging tool for Poker programs; the other three
were developed for specific algorithms. The last view took only three days to complete, and we
expect development time to decrease as more general support is added to the system. These views
have been instrumental in finding bugs in Poker programs, bugs that would have been difficult to
detect otherwise.

This paper first presents a brief overview of the Poker and its debugging facility Trace View.
Then we describe the Voyeur views, and discuss their role in debugging Poker programs. Next we
briefly discuss Voyeur's structure and the process of creating new views. Finally, we present our
conclusions and future directions.

2. The Poker Programming Environment

Poker is a programming language for defining and executing non-shared memory MIMD parailel
algorithms. Poker programmers use a special graphical programming environment, which requires
that five separate development views be defined. Using the Poker programming environment, the
programmer: (1) draws connections between processing elements (PEs) to define the communication
graph (such as a tree or mesh); (2) defines the sequential programs (written in Poker C) using
standard editing and compilation tools; (3) graphically associates the sequential programs with
specific PEs (for instance, assigning different programs to the root and leaves of a tree); (4)
associates symbolic names with each communication port on a PE, increasing the flexibility of
sequential programs that run at each PE; and (5) assigns files to /O pads, connecting the program to
an external file system.

IThis research funded in part by Office of Naval Research Contract N00014-86-K-0264, National Science
Foundation Grant CCR-8416878, and Air Force Office of Scientific Research Contract 88-0023.

9. €0 A9 4%.3%, 5 3% 3 n WY, A WD

.‘,-‘..-',;- -_*_. W Y B B B T R T A MV ST LT RELERTY AWA AL LILTRATR ™ T9.5Y aiy
ALYy : QCRERAALRLA AR UL LR RGN G

A A N A

ooy WL AL,

T,

-
-,

e

NN
el A

]

-

£
.

2.1. Poker Trace View

Poker gmgmms can be run on several parallel architectures(6], such as the CHiP{7] and the Cosmic
Cube(8]. But during development and debugging, most programs are executed using a simulator
that runs on sequential machines. The environment contains a run-time view, the Trace View (see
Figure 1), that integrates the simulator into the environment.

Thu Dec 10 04:180 VIEN: Trece - interconnect
PHASE: 2 LAST PEs 1 1 MM TICKS: 11694

hl leaf

inode

leaf
11

Figure 1. Poker's Trace View.

The Trace View presents the PEs arranged as their communication graph, including what code
they are executing (root, inode, leaf), the PE (i,j) index in the PE grid, and the state of execution
('=' means running) . Before compilation, the programmer inserts t race statements in the PE
codes indicating variables to trace. The compiler then automatically generates code to send new
values of the variables back to the Trace View whenever the variables changes values. Poker's
Trace View displays up to four of trace variable values in each of the PE windows. The latest values

are highlighted.

- ” ~ E o
I A N N LA N O i D IR ML AR i P i MY N .

Above the display of the PEs in Figure 1 are two areas. On the left is a representation of the
entire PE grid. When the screen is too small to fit all of the PEs on the grid, this section will have a
box that outlines the area of PEs that are visible on the screen below it. On the right is an area
displaying status information and messages, as well as a command line used both to control the
execution of the Poker program and also to access and modify the state of the program.

This view has several useful features. The visual structuring of the trace information according
to the program structure greatly helps in seeing patterns during program execution. Highlighting
recent values pinpoints the interesting data among the wealth of data shown. The execution status
quickly informs the user when a PE has stopped and whether it encountered a run-time error.
Finally, the user has a great deal of control over program execution, being able to single step or
execute at full speed, all while watching the changing state of computation.

2.2. Voyeur Poker Trace View

The Voyeur Poker Trace View is an enhanced version of Poker’s Trace View. It is aimed at fixing
two problems of Poker’s Trace View:

1. The view's structure and power is inflexible. The display is tied to the program's
algorithmic description, with the PEs in their grid armangement. Each PE contains a
maximum of four lines of alphanumeric data. There is no facility for tracing or displaying
dynamically allocated structures such as linked lists. The traceable types of data are fixed by
the compiler.

2. The view is fixed in stone. The design of Poker's environment does not admit ready
extension or modification of the view.

Figure 2 shows Voyeur's version of Set _View File Quit l

a Poker Trace View. The status Number of PEs: 16

N . " . . Ex : R .

information is similar to Poker's. The Carnent Phaver 3 | oune fute trace

command line, on the other hand, has Tatal Ticks: 21846

been replaced by a set of buttons for Ticks in phase 2: 11694

frequently used commands, and menu _Moec 4

. . fage Ty 38
items for setting parameters or modifying comtinue

the view's format. Messages from the —vens i 2y er 38. 000000
view to the user are displayed in the e

status area or bundled in notifiers if an
immediate response is needed. Using
buttons and menus gives a more usable
interface.

The most important enhancement is
an increased flexibility inthe display of
the PE area. The trace variable area
contains the name of each variable as well 2
as its value. There is no restriction on the
number of variables shown for each PE. Figure 2. Voyeur Poker Trace View.

The PEs boxes, while still arranged in

their grid reflecting the communication structure of the algorithm, can be re-sized to show more (or
less) information, and individual PEs windows may be copied, moved, and re-sized independently
of the PEs in the grid. The scroll bars move the PE grid within the PE grid window.

Even with the large screens on today's workstations, complex programs with more than a dozen
trace variables per PE easily exceed the screen space. The flexibility of Voyeur's PE window sizes
and duplicate PE windows allows the user to view a small amount of information for all PEs, for
detecting global patterns, while still seeing complete information for a few PEs. Alternatively, the
grid PEs can show complete information while the duplicate PEs show PEs that have been pushed
off the edge of the screen.

g o

o]
*
"
2
»

5
K
..

AL PR Al R s Aty §7) gla §Ua gV ¢

3. Other Voyeur Views

Voyeur's Poker Trace View provides an improved version of Poker's Trace View. Other views
provide assistance in finding other types of bugs. This section describes three other views and how
they helped find bugs in Poker programs. The variety and complexity of some of the bugs is
interesting in itself. We will illustrate the use of views by giving examples of bugs found in a Poker
program being used to investigate ways to dynamically balance the work load for non-shared
memory algorithms.

The algorithm simulates sharks and fishes moving in a two-dimensional grid of (x,y) points (see
Figure 3) [9]). Sharks and fishes inhabit points, one animal per point. Each animal may move one
unit up, down, right, or left, but not off the edge of the grid. Fish are further constrained to move
only into vacant points. Sharks may not move to a point containing a shark but they can, and prefer
to, move to an adjacent point containing a fish
and thus eat it. If there are a selection of PE PE PE PE
available points, the shark or fish randomly PEs:
chooses one. Both species occasionally give 1 2 3 4
birth, with the baby staying in the place the
parent vacates. Sharks starve if they have not
eaten in a while. There is an infinite supply of
plankton, so fish never starve. To simplify
the algorithm, evolution alternates between
moving all of the fish and all of the sharks.

To simplify the allocation of the grid
space to PEs, we divide the world into slices,
where each slice is a column in the grid.

These slices are allocated to the PEs, which
are connected in a single line, such that the
order of the slices in each PE as we traverse
from left to right is the same as in the grid. pre
This order must be maintained. Slices within
a single PE are chained along a linked list.
Within each of these slices, active data points
are chained in an orthogonal linked list,

z

3
*
3

3

Computational World

indicated by the variable sized columns under - & | @< & | @«
the grid. 2 g

Periodically, the algorithm checks to see 3 Q & & o | &
if there is an imbalance in the current £ S e
allocation, i.e., if some PEs have much more i
data (and hence more work to do) than other P
PEs. If so, re-balancig\gc mrs Fa:nd thg slices
are moved to balance gure
shows the effect of re-balancing for this ———+ Rebalance -\———
example. Before re-balance the PEs have 4,
2,0, and 6 data points, respectively. After re- - o] o iy P
balancing, they have 3, 3, 4, and 2 data Lo po - po pro
points, respectively. Note that slices are 2 g
atomic; all data points within a slice must be x 8
contained in a single PE, so there may not be g
equal numbers of data points in the PEs after &>
re-balancing.

Figure 3. Sharks & Fishes algorithm.

R N Oy A A e TSN T 5 S T A T oA e T4 P T D e P e L P A A n e s

.........................

T AT O R R O AN R N AN RN A

-
LR

View File Quit

Numper of PEs: 16

Executicn Stetus: Reading file trace.
Current Phese: 1

Total Ticks: 14992

Ticks in phase 1: 14992

reload
run_phase
list chan

event

)

numSlices = 3 numSlices = 0
numPointsInSlices = 3 numPointslnSlices = 0

interrupt left = 350644 lefe = 0
l right = 351192 right =z 0
self = 351512 self = 350644 self = 350668 self = 351192

rumPoints = L numPoints = 1 numPoints = 1 numPoints = 1

left = 350772 lefe = 0 lefe = 350644 lefr = 350668
right = 0 right = 350669 [|rignt = 351192 |right 2 O

Figure 4. Voyeur's Distributed Linked List View.

3.1. Distributed Linked List View

Even the more flexible interface of the Voyeur Trace View provides little help when tracing dynamic
structures like linked lists. Dynamic structures have no fixed size and are most easily viewed in
terms of their structure. For this reason, we created a Linked List View to show the state of the
linked list used to store the sharks & fishes grid (see Figure 4).

The status and control information of the Distributed Linked List View is similar to that in the
Voyeur Trace View described above. The difference is that the PE grid has been replaced by a
linked list view. At the top of the linked list is a row of headers cells, one for each PE, indicating the
number of slices in that PE, the total number of data points in the slices, and the values of the
pointers to the left-most and right-most slices in the PE. Centered below each header cell is a linked
list of slice headers, each indicating how many data points are occupied in the slice and the values of
the left, right, and self pointers.

The first use of this view detected a bug in the linked list portion of sharks & fishes. When we
deleted a slice from a PE's linked list we forgot to update the pointers :0 that no-longer-existing slice.
This bug was immediately visible in the linked list view, yet had gone undetected during debugging
with the Voyeur Trace View. The Distributed Linked List View also allowed us 1o easily verify that
the slices were moving correctly from oi» PF 10 the another during the re-balance phase of the
program.

This view illustrates one of the philosophies underlying Voyeur: present the state of the
information within the program, as well as synthesized information. The connecting edges do no¢
contain the same information as the pointer values, since an incorrectly written Poker program could
enter a state that was unexpected by and inconsistent with the Voyeur view. Thus, the Distributed
Linked List View shows the actual value of the left, right, and self pointers as well as the synthesized
links connecting slices in order to aid the programmer in detecting expected and unexpected types of
errors.

3.2. Icon View

To determine if the sharks and fishes were moving correctly within and among PEs we developed a
view that shows icons of objects located on a (x,y) coordinate grid (see Figure 5). Again, this view
has a few menus, a small status area, and a set of control buttons for commands. The display area
shows the icons present at each location in the grid, and, optionally, the allcc.ition of the grid points
to PEs. The generation button consumes the next snapshot of the grid as generated by the
simulator.

RAAEED,

Tttt ‘ O Ot I Y Sy - AW O W B s
':‘.'t‘..'n‘..-..‘l'f‘t"‘l "l‘:’t‘- AL |.l.t.,' Ty e ih ety Kk o N Do “ T E T W s,

éjﬁv.r "RIAA 7 _.‘ ‘|‘ '.~) ‘-” 'R ':"'.-‘. Ty Al e YR Fatovat ag 4 af 4 Gaf 258 A - »

)

RS

'
N T e orrr— L] A
File Quit File Quic - Al

Generation = 1 Generation =
eneration ﬁ gereration \

rid & & |- grio & * - |
& * & ‘
& & & &

| J
W
P S, o o g

"
i 3
| 4
"]
| 3
®»
%
® »
*
"l ®»
*
LQ
r @
®
[2
®
»
1
[]
T

[9
%
3
[
®
®»
r @

& & & FE
* &

& (% «%k Sladk % & &|% t-; & - E
r P

o, A

Figure 5. Voyeur's (x,y) Icon View. Figure 6. Using Voyeur's (x,y) Icon View to
show knowledge of adjacent PEs.

This view has been used to find some rather subtle and instructive bugs. Near the beginning of
programming sharks & fishes, before the Icon View was available, we programmed the fish to
randomly choose among the vacant adjacent spots. We laboriously used a standard sequential
debugger (dbx {10]) to follow the execution of one of the PEs in our light-weight process simulator.
The two fish we traced within the PE randomly moved west, which is reasonable. However, when
we viewed the program from Voyeur's Icon View, we saw every fish in every PE "randomly” move
west. Clearly, there was a problem with our use of random numbers, which we quickly traced to an

; incorrect setting of a variable.

{ This bug is interesting since it could have been very difficult to detect locally, yet it jumped out at
us when we saw the global behavior. Furthermore, the view extracted the essence of the algorithm -
- where the fish were and where the moved to -- without requiring us to wade through the actual

X instructions used to move the fish.

A second bug reaffirmed the value of global information. At this point, we were allocating the
grid points to the PEs by dividing the grid into a set of 4x4 squares and connecting the PEs in a
mesh, as reflected in the grid lines in Figure 5. When watching the fish move, we noticed that some
fish on the east side of a PE jumped, in one move, across to the west side of the same PE. In one
place in the program, we had reversed the constants EAST and WEST. Not only was this bug

X obvious when watching the view, but noticing that fish never jumped between the north and south
’ edges supplied more data for finding the bug.
A third interesting bug occurred when we started moving fish across PE boundaries. The first
! clue that something was wrong was that sharks adjacent to a fish in bordering PE were not eating the q
! adjacent fish. After getting more information from the simulator about what each PE thought was in
adjacent PEs, and creating icons to indicate what each PE thought was in the border of adjacent PEs

(f for a shark to the left, | for a fish, and so on), we discovered that PEs in the lower right section
were not correctly transmitting their edge information (see Figure 6). We had replaced instances of a
constant, 4, describing the width of a PE's area with a variable and changed the local coordinate
v system from being relative to the upper left comer of each PE to being relative to the upper left comer
of the entire grid. However, we had missed a few constants so that points with coordinates greater
than 4 were being ignored when passing information to adjacent PEs.

f-?,..‘n:-

R R e =Y g

S YV ELEA

SIS

. T T G G Iy Sy o '-_"

F g
-

15N,

v
-
-

A S VAN AR UL PR L' i VP v oy " L] AT A - A AN - - g S VAL WL WS MLTILE Wl &
‘l"'. fad) A‘ “" B V T LB DO “'.’-'; 2 2 * \.'\'\" 'n.‘&. .'!. \“, ., A.p Nal 0.0 X ‘ A.d\ E"C:f." ’.\'\"“\’

¥ 29 Se¥ ¥ B,

RS T I T X K TIN™ AT WU W PR U R S TR R LR VR K TR R e N TRV AN A N YTy A’ At

K
X File Quit !
’ ration 3 O
Sene ‘u‘° File Quit
eneration|
L’ e Generation = 4 File Quit
eneration Generation = 6 ot
(grid generacion) .

I grid

» -
—

e -

s
-

Figure 7. Voyeur's (x,y) Vector View.

-

A N

\

h 3.3. Vector View ‘,
. Our fourth view plots vectors on an (x,y) grid. The Vector View (see Figure 7) has the same status, N

[menus, and control buttons as the Voyeur (x,y) Icon View. The difference is that it plots vectors -
3 with squares at the origin. N

f We developed this view from the (x,y) Icon View by adding a setup file for increased flexibility.

Each line of the file specifies the type of an object to view (icon or vector), the simulator's unique

X idendfier for that object, and the file containing the titmap for that object. Adding more objects, -]
changing an object's appearance, or removing an object is as easy as modifying this file. ’

X This view was used by a colleague in the Applied Math department to see if the explosion of the ”

1 SIMPLE (11,12] calculation running under Poker was due to an algorithmic problem or a numerical '
instability resulting from the sparseness of points in the 3-dimensional space. By viewing the

\ evoludon of the vectors across time he could see the vectors crossing just before the simulation blew '

B up, indicating numerical instability instead of an algorithmic error (see Figure 7). ~

4. Integrating Voyeur and Programs X

While having the various views has been invaluable in debugging Poker programs, the key to
Voyeur's usefulness is the ease of creating new views. This is facilitated by Voyeur's structure.
The structure of the Voyeur prototype is shown in Figure 8. Boxes with square comers are heavy-
weight processes. Boxes with round comers are modules. Messages from the user filter down to
; change the form of the view or to request more simulation data. Messages from the simulator filter
\ up to change the state shown by the view. ¢
N A Voyeur view consists of the simulator interface, the adapter, the modeler, and the renderer ;)
{13). The adapter translates between the string-based simulator messages and the procedural N
interface of the modeler and renderer. These messages may come directly from the simulator, or ',‘.
may come from a trace file produced by the simulator. Based on the type of each simulator message, (¥
the corresponding procedure for that message is called. The modeler manages data specific to the
A application. The renderer defines the user interface (based on X-windows [14]), which is =
! responsible for drawing the view of the modeler, for manipuiating the form of the view, and for .
' leting the user control the program’s execution. Just as control events from the X-window interface
\ drive the execution of the renderer and modeler, state messages from the simulator drive the adapter,
! the modeler, and the renderer.

The user interfaces of the views share a basic structure. The view's title is contained in a title bar
at the top of the view. Underneath the title bar is a set of pull-down menus. These can be fairly
complex, as in the Trace View, or can simply contain a facility for quitting, as in the (x,y) Icon
View. Below the menu bar is a status area containing data appropriate for the view. Below this and

T Ta 2 S Y RGN Ty
- bl

— e e e

PEL L

T e e e A T e ey e D 3

,&

R A e A . .
A O S I W "x-s. ~.f -, ” w'e,

a-
18, .

s

T

to the left is a set of control buttons for

controlling the execution of the
simulation. The data area is in the lower [X-windows |&—— £) yqar
right-hand comer, and contains scroll
bars for movement within this area. -
To create ;0 new view, the user first View:| vy l
annotates the Poker program to send Renderer L svent-driven j
appropriate messages (o the view. The X-window specification program
adapter is automatically created froma = | ool t
description of these messages. The user -
must then write the modeler and the Modeler Application specific °“‘)
: renderer. Because much of the user & manipulation routines
: interface is common to all views, creating | ... 8L S
‘ the renderer consists of modifying an s
existing one. For example, creating the Adapter e
Distributed Linked List View fromthe | & . s
Trace View took only three days.
; Jﬁtoﬂm to simulatoD
[Y
‘-—ﬁ‘—- [smutaor

Figure 8. Voyeur System Structure.

5. Conclusions

The Voyeur prototype provides easy construction of new and flexible views for parallel debugging

that have greatly eased the laborious task of finding obscure bugs in Poker programs. The current

! structure has a fairly high degree of flexibility both in the power of the views and in the creation of
new views.

Sdll, there are many areas for improvement; we are now pursuing these as a part of the Orca
project. We will to exploit the taxonomy of views, possibly using an object hierarchy to classify and
create modifications of old views. The setup file used in the Icon and Vector Views is a weak
attempt at exploiting class similarities. We need to explore new views. For instance, a new view to

! log the human-readable messages received from the simulator and provide search and elision

) capabilities within the messages would help ferret out the worst of the low-level bugs. Increasing

, the flexibility of the existing views is another goal. For instance in the Icon View, it would be nice to
allow the user to select the viewable icons while running the simulator. Also, logical zooming is a
powerful tool. For instance zooming out using the Icon View could replace the icons with smaller
icons and eventually just a dot for each icon. Finally, we need to explore using Voyeur with other
programming systems, such as Presto [15], which supports the developmenit of multi-threaded C++

programs.
6. References
(1] C.L. Seitz. The Cosmic Cube. Communications of the ACM 28, 1, pp. 22-33 (January 1985).

(2] T.W. Pratt. The PISCES 2 Parallel Programming Environment. Proceedings of the 1987
International Conference on Parallel Processing, pp. 439-445.

(3] A.A. Hough and J.E. Cuny. Belvedere: Prototype of a Pattemn-Oriented Debugger for Highly
Parallel Computation. Proceedings of the 1987 International Conference on Parallel Processing,
pp. 735-741.

8 Q

)

R
-

M LT EY O R Ry A N R L - " AR A AT N AT AT AT R LA W S RS A e R >y A
DR o e e o e T N A e N N M P M S W MR ‘~‘-“t

(4] B.R. Engstrom and P.R. Capello. The SDEF Systolic Programming System. Proceedings of
the 1987 International Conference on Parallel Processing, pp. 645-652.

(5] L. Snyder. Parallel Programming and the Poker Programming Environment. /EEE Computer
17,7, pp. 27-36 (July 1984). ¢ omp

[6] L. Snyder and D. Socha. Poker on the Cosmic Cube: The First Retargettable Parallel
Programming Language and Environment. Proceedings of the 1986 International Conference on
Parallel Processing, pp. 628-635.

{7] L. Snyder. Introduction to the Configurable Highly Parallel Computer. /EEE Computer 15,1,
pp. 47-56 (January 1982).

[8) C.L.Seitz. The Cosmic Cube. Communications of the ACM 28,1, pp.22-33 (January 1985).
[9] A.K. Dewdney. Computer Recreations, Scientific American, pp.18-22 (December 1984).

{10] Dbx. UNIX Users Manual Reference Guide. 4.2 Berkeley Software Distribution. USENIX
Association. (March 1984).

[11] W.P. Crowley, C.P. Hendrickson, T.L. Rudy. The Simple Code. Technical Report UCID-
17715, Lawrence Livermore Laboratory (February 1978).

{12] K. Gates. Personal communication.

[13] M.H. Brown . Algorithm Animation. Ph.D. Dissertation. Technical Report CS-87-05,
Department of Computer Science, Brown University (April 1987).

[14) R.W. Scheifler and J. Gettys. The X Window System. ACM Transactions on Graphics 5,2,
pp. 79-109 (April 1986).

(15] B. Bershad, E.D. Lazowska, and H.M. Levy. PRESTO: A System for Object-Oriented
Parallel Programming. Technical Report 87-09-01, Department of Computer Science, University
of Washington (September 1987).

PR L N

0 1L T AN A ’ s P R I P R AT o AT A T N e — A A
"« Ly (" A ﬁ.\f !I’!‘"i 0." I.“.Q.‘ (B ".'. .' ‘ LA LA K -hk."o J ..‘ 0" -\,A :‘..l .&,.‘ ,l‘.AJ N “". < *‘ -.

g m

AT,
X

e
i

-

5 ok
f"

L il ?w
P

b

B AY
ROLL Lo
TELREL: Y =i

Lk

